

Escambia County Low Impact Design Workshop

An Overview of Stormwater Management and the Role of Low Impact Design BMPs

www.stormwater.ucf.edu

ACKNOWLEDGEMENTS

- The Low Impact Design BMP workshops were presented on August 24 and 25, 2016 at the Escambia County Central Office Complex in Pensacola.
- The Escambia County LID BMP Manual and the LID BMP Workshops were funded in part by a Section 319 Nonpoint Source Management Program Implementation grant from the U.S. Environmental Protection Agency through an agreement/contract with the Nonpoint Source Management Section of the Florida Department of Environmental Protection.

Facilitators/instructors

- Marty Wanielista, University of Central Florida, Orlando. Marty has completed over 100 research projects in the State of Florida. He has graduated with advanced degrees over 100 students, has over 300 publications and has been conducting stormwater management work in the State for 46 years. He was one of the designers of the greenroof on the Central Office Complex.
- Eric Livingston, Watershed Management Services. Eric, in his 35 years at FDEP, helped develop, administer, and evolve Florida's stormwater treatment program. He funded and managed hundreds of stormwater BMP projects, In 1999 he developed a 10 year LID research and monitoring program. The results of these projects have been used to refine conventional BMPs and create design criteria for LID BMPs.

Presentation Outline

- 1. Florida's water quality program
- 2. The stormwater management issue
- 3. Evolution of Florida's stormwater treatment program and BMPs
- 4. Impaired waters and stormwater treatment
- 5. What is Low Impact Design?
- 6. Permitting LID BMPs for ERP
- 7. LID BMPs purpose, design, construction, maintenance
- 8. LID BMP treatment effectiveness and computational aids

Florida's Waters – Diverse, Valuable, Vulnerable

Sandy soils
Karst geology
Surface/ground water
Rainfal/drought
Agriculture
Urbanization

2,771,305 4,951,560 6,791,418 9,746,961 12,937,926 15,982,378 20,000,000+

Control Of New Pollution Sources

YEAR	LEGISLATION, PROGRAM, OR RULE ENACTED FOR NEW SOURCES
1973	DRI/ACSC legislation; Environmentally Endangered Lands Act
1973	Chapters 373 and 403 enacted
1975	Local Government Comprehensive Planning Act
1979	State stormwater rule; CARL program
1981	Final state stormwater rule passed; Save Our Coasts/Rivers program
1984	Wetlands Protection Act; State and Regional Planning Act
1985	State Comprehensive Plan
1986	Local Government Comprehensive Planning and Land Development Regulation Act
1989	Preservation 2000 program

LEGISLATION, PROGRAM, OR RULE ENACTED FOR POLLUTION SOURCES	EXISTING
Stormwater utility enabling legislation	
SWIM legislation and funding	
Stormwater legislation creates 403.0891 and leads to Implementation rule (62-40, FAC) Section 319 Nonpoint Source grant funds begin	State Water
Nitrate bill and fertilizer tax for agricultural BMPs	
State Revolving Fund opened to urban and ag storm	water projects
Florida Forever Act and Florida Watershed Restoration	on Acts passed
Lake Okeechobee Protection Program Act	
FWRA Amendments (BMAPS) and doc stamp funding	g
Northern Everglades and Estuaries Protection Act Florida Springs and Aquifer Protection Act	Freedom Park
	POLLUTION SOURCESStormwater utility enabling legislationSWIM legislation and fundingStormwater legislation creates 403.0891 and leads to Implementation rule (62-40, FAC)Section 319 Nonpoint Source grant funds beginNitrate bill and fertilizer tax for agricultural BMPsState Revolving Fund opened to urban and ag stormFlorida Forever Act and Florida Watershed RestorationLake Okeechobee Protection Program ActFWRA Amendments (BMAPS) and doc stamp fundingNorthern Everglades and Estuaries Protection Act

Florida's Water Quality Management Program

Legal Framework

- Water body classification
- Water quality standards
- Point source management
- Nonpoint source management
- Land use management
- Watershed management

The Foundation – Water Quality Standards

Water Body Classifications (62-302, FAC)

- Class 1 Potable water supply
- Class 2
- Class 3
- Class 4
- Class 5

Potable water supply Shellfish harvesting Fishable/swimmable Agricultural canals Industrial

- Water Quality Standards (62-302, FAC)
- Water chemistry
- Biology
- New numeric nutrient criteria
- Revised dissolved oxygen criteria Impaired Waters Rule (62-303, FAC)
- For IWR assessments only

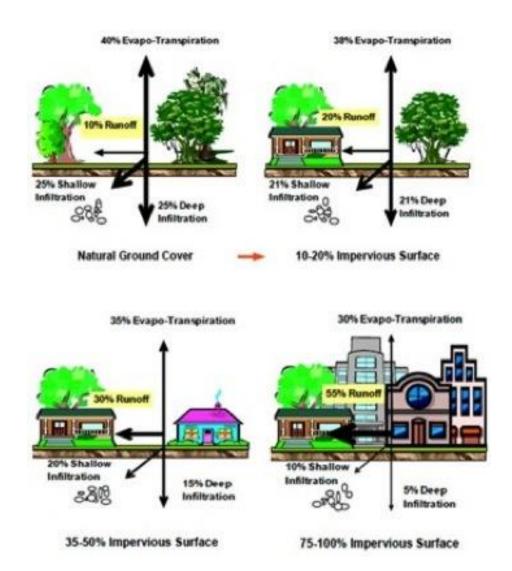
Water Pollution

POINT SOURCES

- Municipal ww ~ 2,100 facilities
- Industrial ww ~ 1,300 facilities
- Agricultural ww CAFOs
- Stormwater SIC codes

NONPOINT SOURCES Diffuse

- Rainfall, runoff, leaching
- Related to land uses


THE STORMWATER PROBLEM

Humans cause:

- Changes in land use, clearing of land
- Compaction of soil, imperviousness
- Development in floodplains, wetlands
- Alteration of natural stormwater systems
- Addition of "drainage" systems
- Addition of pollutants

Resulting in:

- Decreased recharge
- Increased speed of runoff
- Increased volume of runoff
- Increased pollutants

Hydrologic Changes Associated With Urbanization

Big Messy Problem

Common Pollutants

- Sediments
- Oxygen demanding substances
- Nutrients
- Pathogenic bacteria
- Heavy metals
- Oil & grease, hydrocarbons
- Fresh water

Florida's Stormwater Rules

- 1979 Chapter 17- 4.248, F.A.C.
- 1982 Chapter 17- 25, F.A.C.
- 1994 Chapter 62- 25, F.A.C. ERP implemented
- 2007 NW ERP implemented

2013 Chapter 62-330, F.A.C

TECHNOLOGY BASED

- Performance Standard
- BMP Design Criteria
- Presumption of compliance
- Dynamic BMP design criteria

Performance Standard For New Stormwater Discharges (62-40.432, FAC)

Stormwater quality – Original Rule

- 80% average annual load reduction
- 95% average annual load reduction "Of Total Suspended Solids"

Stormwater quality – 1990 – 62-40 revised

- 80% average annual load reduction
- 95% average annual load reduction

"Of pollutants that cause or contribute to violations of water quality standards"

BUT BMP DESIGN CRITERIA WERE NEVER UPDATED

Evaluation of Current Stormwater Design Criteria within the State of Florida

Final Report

FLORIDA DEPARTMENT OF ENVIRONMENTAL PROTECTION

FDEP Contract No. 50108

June 2007

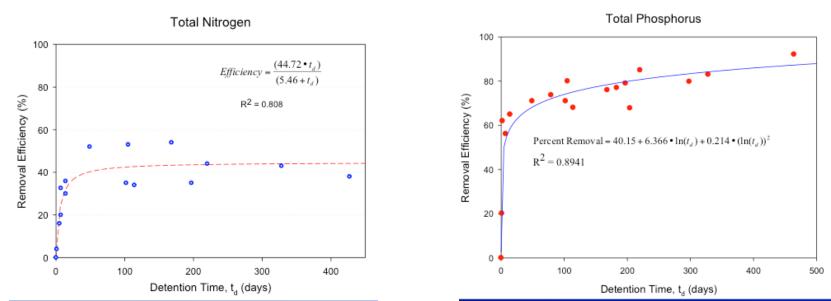
Prepared By:

forvey H. Horper, Ph.D., P.E. David M. Boker, P.E.

Environmental Research & Design, Inc. 3419 Trentwood Bhd., Suite 102 Orlando, FL 32812

Design Criteria Presumption Rebutted!

"This section provides an analysis of potential modifications to existing stormwater design criteria within the State of Florida to meet the performances objectives outlines in the Water **Resource Implementation Rule (Chapter 62-40,** FAC). This rule requires that stormwater management systems achieve at least an 80% reduction of the average annual load of pollutants that would cause or contribute to violations of State water quality standards. If the stormwater management system discharges to a designated OFW or other protected water body, the performance criteria increase to a 95% reduction. Based on the analyses presented in Section 5.2, with the exception of the SJRWMD design criteria for on-line dry retention, existing stormwater design criteria fail to consistently meet either the 80% or 95% target goals outlined in Chapter 62-40."


BMP Load Reduction Effectiveness

Retention BMPs

 0.5" treatment volume provides from 38.1% to 91.8% load reduction depending on % DCIA and non-DCIA CN

Wet detention systems

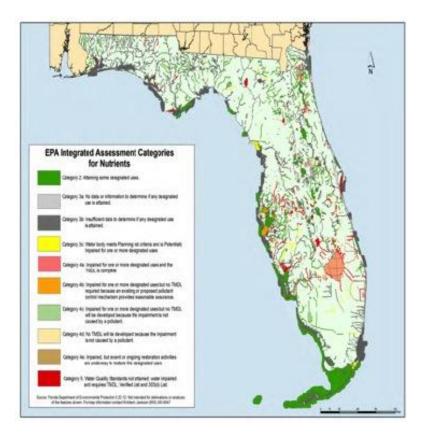
Treatment related to residence time

When Are Higher Levels Of Stormwater Treatment Required? Discharges to OFWs

- Must meet "antidegradation" standard
- Presumptive = 95% load reduction
- Net improvement = antidegradation
- **Discharges to Impaired Waters**
 - Must meet "net improvement" standard
 - Must demonstrate load reduction achieved

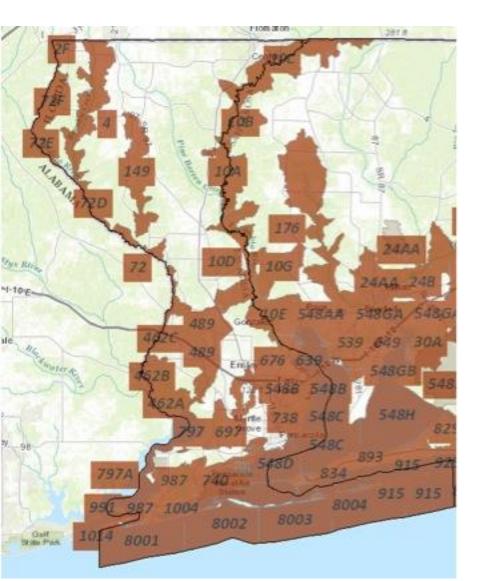
What Is "Net Improvement"?

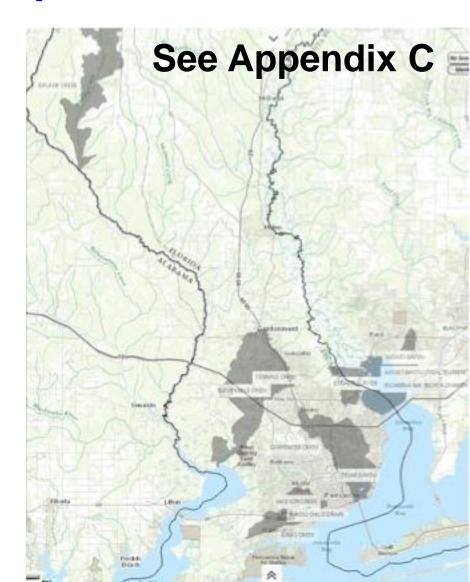
Verified impaired water body


- DEP/WMDs require one pound less loading of the pollutant(s) causing impairment after development
- Recommend at least 10% reduction in postdevelopment loading to meet statutory intent.

Impaired water body with adopted TMDL

 Post-Development Load < Pre-Development Load – WLA % reduction


Impaired Waters In Florida


- 2,776 spreadsheet lines of water bodies in cumulative FDEP 303(d) list!
- Most common impairments are nutrients, DO and fecal coliforms

Parameter Assessed	Number Impaired	Miles Impaired
DO	699	5,975
Fecal Coliform	338	2,685
Mercury (in fish tissue)	249	2,903
Nutrients (chlorophyll a)	153	1,014
Biology	36	320
Nutrients (other than chlorophyll a)	28	18
Iron	17	314
Lead	14	123
Specific Conductance	10	111
Bacteria (shellfish harvesting classification)	10	82
Turbidity	10	83
Un-ionized Ammonia	7	69
TP	6	76
Biochemical Oxygen Demand	2	21
Copper	2	3
TDS	2	6
Silver	1	6
Chloride	1	0
Dioxin	1	2
TSS	1	3

Escambia County Impaired Waters and Waters with Adopted TMDLs

How To Determine If Water Body Is An OFW, Is Impaired, Or Has An Adopted TMDL

- Use DEP's Map Direct to determine if water body or WBID is an OFW or it's impairment and TMDL status
- Use DEP's Map Direct to see if project site is within the 12 unit HUC (subwatershed) of an impaired water body
- Use DEP's TMDL Tracker system to see if a TMDL is adopted, or check 62-304, F.A.C.
- Use EPA's Ask Waters system

Dep Map Direct System http://ca.dep.state.fl.us/mapdirect

and land. DEP is divided into three primary areas: Regulatory Programs, Land and Recreation, and Water Policy and Ecosystem Restoration. Florida's environmental priorities include:

* Developing a consistent and effective regulatory process

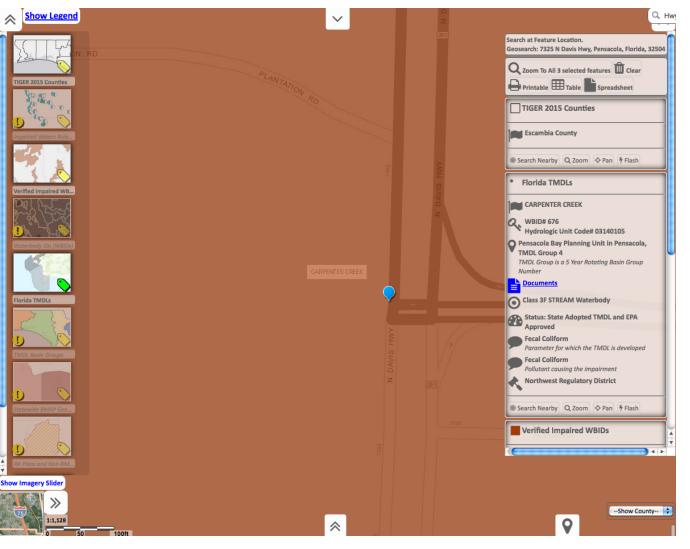
* Ensuring the quality and quantity of our state's water resources

* Increasing the access to our award-winning state parks

Select Basemap and Data Layers

 Select Basemap from options at arrow in left bottom of map
 Open Data Layers by clicking on arrow at upper left of map, and then on + More Data

Map Direct - Select Data Layers


ant Parter das

Sectors

From NHD Data Layer
 Select HUC 12 sub-watershed
 From Watershed Assessment

 a. Select Verified Impaired WBIDs
 b. Select Florida TMDLs
 c. Select WBIDs

Map Direct – Enter Address, WQ Results

- 1. Be sure desired data layers are turned "on"
- 2. Enter address into search box in upper right hand corner
- 3. Results for each data layer will be shown

Why Are Higher Levels Of Stormwater Treatment Required?

- Section 402(p) of Federal Clean Water Act
- Establishes NPDES stormwater permits
- Construction permit requires treatment to meet WQS
- MS4 permit requires local governments to reduce pollutant loadings
- MS4 permit requires reducing pollutant loads to achieve TMDLs and BMAPs
- MS4 permit requires load tracking/reporting

Why Are Higher Levels Of Stormwater Treatment Required?

Section 373.414(1)(b)3., Florida Statutes

3. If the applicant is unable to meet water quality standards because existing ambient water quality does not meet standards, the governing board or the department shall consider mitigation measures proposed by or acceptable to the applicant that cause net improvement of the water quality in the receiving body of water for those parameters which do not meet standards.

Net Improvement = Very High Level Of Stormwater Treatment

- Net Improvement can require as much as 90% removal to meet TMDL (26% WLA)
- Need to use combination of structural and nonstructural pollution prevention BMPs including Low Impact Development BMPs

Pollutant Load = (Concentration) * (Volume)

Stormwater volume factors:

- Rainfall variables include when, where, how long, how intense, time between storms
- Natural stormwater variables include soils, geology, SHWT, topography, vegetation

Human stormwater variables include land use, site design, soil compaction, percent imperviousness, % DCIA

Table 2-2a Runoff curve numbers for urban areas

Cover description		Curve numbers for 				
	Average percent		-illa ologie son Broub			
Cover type and hydrologic condition	impervious area 2/	A	В	С	D	
Fully developed urban areas (vegetation established)						
Open space (lawns, parks, golf courses, cemeteries, etc.)2:						
Poor condition (grass cover < 50%)		68	79	86	82	
Fair condition (grass cover 50% to 75%)		49	69	79	84	
Good condition (grass cover > 75%)		39	61	74	80	
Impervious areas:						
Paved parking lots, roofs, driveways, etc.						
(excluding right-of-way)		98	98	98	98	
Streets and roads:						
Paved; curbs and storm sewers (excluding						
right-of-way)		98	98	98	98	
Paved; open ditches (including right-of-way)		83	89	92	9	
Gravel (including right-of-way)		76	85	89	9	
Dirt (including right-of-way)		72	82	87	89	
Western desert urban areas:		2040-C	ALCON PR	and a		
Natural desert landscaping (pervious areas only) 4/		63	77	85	8	
Artificial desert landscaping (impervious weed barrier,						
desert shrub with 1- to 2-inch sand or gravel mulch						
and basin borders)		96	96	96	9	
Urban districts:		100.00				
Commercial and business		89	92	94	95	
Industrial		81	88	91	95	
Residential districts by average lot size:						
1/8 acre or less (town houses)		77	85	90	92	
1/4 acre		61	75	83	87	
1/3 acre		57	72	81	8	
1/2 acre		54	70	80	85	
1 acre		51	68	79	84	
2 acres		46	65	77	82	
Developing urban areas						
Newly graded areas						
(pervious areas only, no vegetation) [™]		77	86	91	94	
Idle lands (CN's are determined using cover types						
similar to those in table 2-2c).						

Stormwater Event Mean Concentrations

Florida EMC data base – June 2016

AWT wastewater TN = 3mg/l TP = 1 mg/l

Land Use Category	Total N	Total P	BOD	TSS	Copper	Zinc
Low Density Residential ¹	1.64	0.270	5.25	25,75	0.010	0.036
Single Family	2.07	0.327	7.90	37.50	0.016	0.062
Multi-Family	2.32	0.520	11.30	77.90	0.009	0.086
Low Intensity Commercial	1.13	0.188	7.60	59.90	0.017	0.083
High Intensity Commercial	2.40	0.345	11.30	69.70	0.015	0.160
Light Industrial	1.20	0.260	7.60	60.00	0.003	0.057
Highway	1.52	0.200	5.20	46.00	0.025	0.116
Natural Vegetated Community	1.22	0.213	2.60	15.50	0.003	0.011
Range land/park land	1.15	0.055	1.40	8.40		
General Agricultural	2.80	0.487	3.80	34.20	0.012	0.021
Pasture	3.51	0.686	5.10	67.10		
Citrus	2.24	0.183	2.60	15.50	0.003	0.012
Row Crops	2.65	0.593		19.80	0.022	0.030
Conventional rooftops	1.05	0.12				

How Do We Reduce Stormwater Loading?

- Reduce stormwater pollutant concentrations
- Reduce stormwater volume
- Better site design integrate stormwater into site
- Use BMP Treatment Train with nonstructural and structural stormwater BMPs
- Minimize imperviousness, especially DCIA
- Reduce pollutants using source controls including public education

Why Low Impact Design? Added BMPs In Tool Box

- Promote development and redevelopment through greater flexibility
- Build local economy and promote "urban regeneration"
- Get higher levels of stormwater treatment
- Keep loads out of MS4
- Protect local taxpayers and water bodies

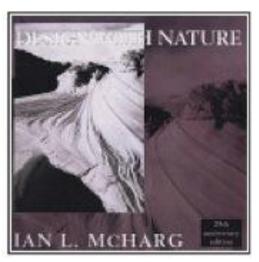
- Pervious Pavement
 - Concrete
- Pavers
- Rain Gardens / Bio Swales
- Street Infiltration Basins
- Bio Filtration Planter Boxes
- Green Gutters

City of Palmetto Urban regeneration project

What Is Low Impact Development?

- Comprehensive watershed approach
- Hydrology is integrating framework
- Maintain predevelopment volume and hydrology
- Control stormwater at the source
- Combine nonstructural pollution prevention BMPs with structural BMPs
- Create multifunctional landscape and infrastructure

Pollution and Hydrologic Prevention


What Low Impact Development is Not

LID is NOT a silver bullet solution to all stormwater problems

- Additional nonstructural and structural tools in the BMP tool box
- Infiltration BMPs do not work everywhere

LID is NOT a new idea

- "Designing with Nature" 1969 book by Ian McHarg
- FL stormwater program has always promoted retention BMPs

The Problem: Conventional Site Design Efficiency

- **Collect**
- Concentrate
 Convey

Good Drainage Approach

Low Impact Development Principles To Reduce Stormwater Volume/Loads

- Consider stormwater as a resource
- Protect/avoid sensitive areas
- Minimize disturbed areas / soil compaction
- Minimize loss of vegetation and trees
- Plant more trees intercept rainfall
- Cluster development, have open space
- Maximize infiltration
- Minimize imperviousness, especially DCIA
- Integrate stormwater BMPs into site & landscaping
- Use Florida-friendly landscaping and fertilizers

Low Impact Design Projects in Florida

Madera, Gainesville

Baldwin Park, Orlando

Town of Harmony

Impediments To Advanced Stormwater Treatment/LID BMPs

- Review existing Comprehensive Plan, Code of Ordinances, Land Development Code
- Identify impediments to achieving advanced stormwater treatment or use of LID BMPs
- Identify out dated terminology, legal refs
- Ensure redevelopment activities are fully addressed
- Comprehensive Plan elements
 - Land Use, Housing
 - Transportation, Utilities
 - Conservation, Coastal Zone Mgmt

Impediments To Advanced Stormwater Treatment/LID BMPs

- Code of Ordinances
 - Fertilizer Ordinance
 - Parks and Recreation
 - Solid and hazardous waste
 - Building codes
- Land Development Code
 - General provisions redevelopment
 - Definitions update, consistency
 - Zoning Districts Impervious surface ratio
 - Development Standards
 - Update references to other manuals, rules, laws
 - Update terminology

Impediments To Advanced Stormwater Treatment/LID BMPs

- Land Development Code (continued)
 - Streets and parking promote narrow, pervious
 - Sidewalks and trails promote pervious
 - Landscaping Consistent with FFL program
 - Fertilizers Require Florida-friendly, training
 - Recreation Promote pervious parking, FFL and fertilizers, Golf course BMP manual
 - Stormwater promote LID BMPs, regional systems, permit reviews, inspections, OM

Incentives For Advanced Stormwater Treatment/LID BMPs

- Establish within Land Development Code
 - Open Space Requirements
 - Landscaping Requirements
 - Coordination with regional systems
- Financial incentives
 - Reduction in stormwater utility fee
 - Energy related rebates, such as for green roofs
 - For stormwater harvesting sales income offsets construction costs
 - Higher building density allowed
 - Lower impact fees
 - Reduced pipe sizes with lower runoff rates
 - Dual use of landscape areas thus reducing other land purchases.
 - Faster plan review time when Stormwater Manual is used.

LID BMPs in Escambia County Manual

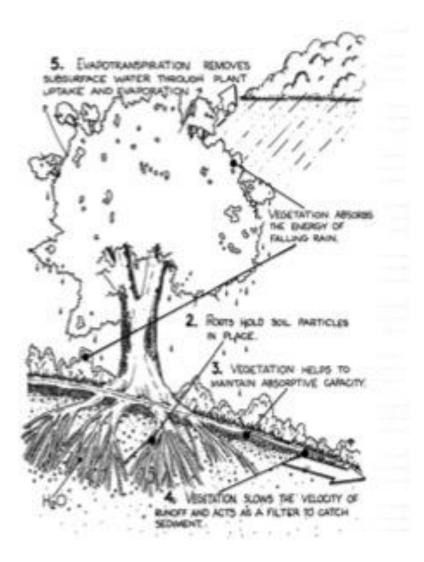
Site Planning BMPs	Conceptual Site Planning	Struc
SP1	Inventory Site Assets: Hydrology	
SP2	Inventory Site Assets: Topography	
SP3	Inventory Site Assets: Soils	- SW1
SP4	Inventory Site Assets: Vegetation	 Section
SP5	Protect Surface Waters and Wetlands	SW2 Section
SP6	Preserve Open Space	SW3
SP7	Natural Area Conservation - Retain Tree Canopy and Native Landscapes	Sectio
SP8	Cluster Design and Maximize Gross Density	 SW4 Section
SP9	Minimize Building Footprint	SW5
SP10	Minimize Total Impervious Area	Sectio
SP11	Minimize Directly-Connected Impervious Area	 SW6 Section
SP12	Curb Elimination and Curb Cuts	SW7
Source	Source Control Techniques	Sectio
Control BMPs		SW8
SC1	Retain Natural Landscape Depressions	Sectio
SC2	Minimize Clearing and Grading	SW9
SC3	Minimize Soil Disturbance and	Sectio
	Compaction	SW10
SC4	Build with Landscape Slope	- Sectio
SC5	Retain Native Landscapes at the Lot Level	- SW11
SC6	Florida-friendly Landscapes and Fertilizers	- Sectio
SC7	Rainfall Interceptor Trees	SW12 Section
SC8	Install Efficient Irrigation Systems	SW13
SC9	Use Non-potable Water Supply for Irrigation	Section
SC10	Community and Home Owner Education	
	-	

Structural BMPs	Structural Stormwater BMPs
SW1 –	Retention Basin
Section 5.3	
SW2 –	Exfiltration Trench
Section 5.4	
SW3 –	Underground Storage and Retention
Section 5.5	
SW4 –	Rain Gardens (Bioretention)
Section 5.6	
SW5 -	Treatment Swales
Section 5.7	
SW6 -	Vegetated Natural Buffers
Section 5.8	
SW7 –	Pervious Pavements
Section 5.9	
SW8 –	Green Roofs with Cisterns
Section 5.10	
SW9 -	Rainwater Harvesting/Cisterns
Section 5.11	_
SW10 -	Stormwater Harvesting/ Horizontal Wells
Section 5.12	
SW11 -	Up-Flow Filter Systems
Section 5.13	- · · · · ·
SW12 -	Managed Aquatic Plant Systems
Section 5.14	
SW13 -	Biofiltration Systems with Biosorption
Section 5.15	Activated Media

Improved Site Planning BMPs

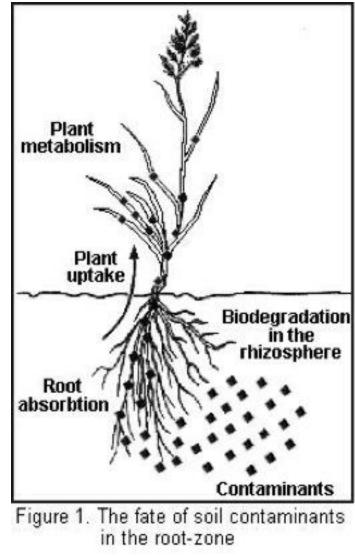
- **SP5 Protect waters, wetlands**
- **SP6 Preserve Open Space**
- SP7 Natural Area Conservation, retain tree canopy
- SP8 Cluster development
- SP9 Minimize building footprint

SP10 - Minimize imperviousness SP11 - Minimize DCIA


SP12 - Curb elimination & curb cuts

NATURAL AREA CONSERVATION

Credit for preserving natural areas



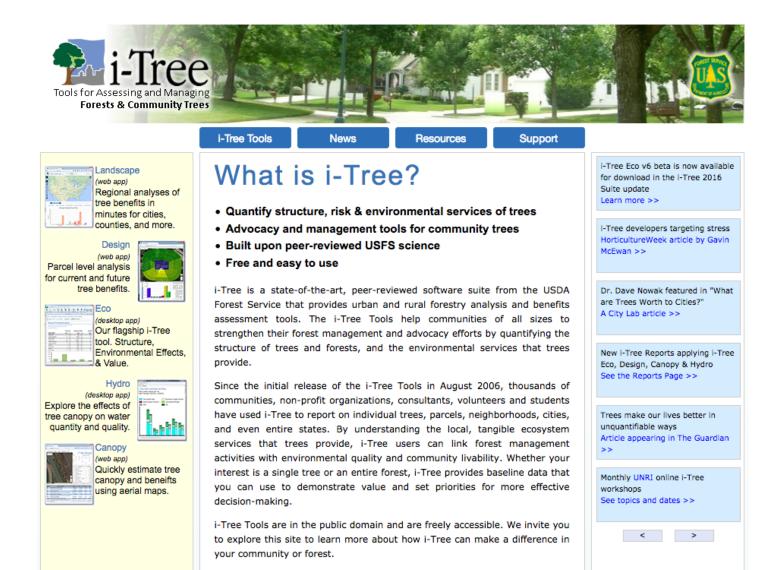
The Stormwater Benefits Of Trees

Planting trees in urban areas intercepts and evaporates rain and reduces stormwater volume and loads

Biological Pollutant Removal Plant / Soil Flora / Soil Chemistry

- Phytoremediation
 - Translocate
 - Accumulate
 - Metabolize
 - Volatilize
 - Detoxify
 - Degrade
- Bioremediation

Trees Are Stormwater BMPs!


Urban Ecosystem Analysis, Jacskonville

American Forests (www.americanforests.org)

City of Jacksonville Land Cover***	1992 Acres	2002 Acres	% Change of landcover type
Forest/woody wetlands	234,262.4	205,320.0	-12.4%
Open Space	48,692.9	59,825.0	22.9%
Developed Area	150,869.8	175,685.3	16.4%
Open Wetlands	49,745.5	45,816.7	-7.9%
Water	56,772.9	55,787.0	-1.7%

	Forest/ Woody Wetlands (acres)	Stormwater Management Value (cu.ft.)	Stormwater Management Value** (\$)	Air Pollution Annual Removal Value (lbs.)	Air Pollution Annual Removal Value (\$)
City of Jacksonville 1992	234,262	984 million	\$1.97 billion	22.3 million	\$55.4 million
City of Jacksonville 2002	205,320	928 million	\$1.86 billion	19.6 million	\$48.5 million
Change	-12.4%	-56 million	-113 million	-2.76 million	-6.84 million

I-TREE TOOLS http://www.itreetools.org/

Using Low Impact Development To Reduce Imperviousness

- Tailor and decrease road width
- Minimize road length
- Use pervious pavements for parking
- Reduce required parking spaces
- Reduce parking space size
- Use one way angled parking
- Minimize paved driveways/size
- Side walks on one side only

Requires Land Development Code revisions

Reducing Imperviousness In Parking Lots

Nonstructural tools

- Reduce required parking spaces
- Reduce parking space size
- Use one way angled parking

Structural tools

- Use pervious pavements for parking
 - Pervious concrete
 - Turf block/pavers
 - Geoweb and sod

BUT, THIS MAY REQUIRE CODE OR CULTURAL CHANGE

THE INFLUENCE OF DCIA **ON STORMWATER VOLUME**

Zone 1 Mean Annual Runoff Coefficients (C Values) as a Function Of DCIA Percentage and Non-DCIA Curve Number (CN)

NDCIA CN	Percent DCIA																				
	0	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90	95	100
30	0.006	0.048	0.090	0.132	0.175	0.217	0.259	0.301	0.343	0.386	0.428	0.470	0.512	0.554	0.596	0.639	0.681	0.723	0.765	0.807	0.849
35	0.009	0.051	0.093	0.135	0.177	0.219	0.261	0.303	0.345	0.387	0.429	0.471	0.513	0.555	0.597	0.639	0.681	0.723	0.765	0.807	0.849
40	0.014	0.056	0.098	0.139	0.181	0.223	0.265	0.307	0.348	0.390	0.432	0.474	0.515	0.557	0.599	0.641	0.682	0.724	0.766	0.808	0.849
45	0.020	0.062	0.103	0.145	0.186	0.228	0.269	0.311	0.352	0.394	0.435	0.476	0.518	0.559	0.601	0.642	0.684	0.725	0.767	0.808	0.849
50	0.029	0.070	0.111	0.152	0.193	0.264	0.275	0.316	0.357	0.398	0.439	0.480	0.521	0.562	0.603	0.644	0.685	0.726	0.767	0.808	0.849
55	0.039	0.079	0.120	0.161	0.201	0.242	0.282	0.323	0.363	0.404	0.444	0.485	0.525	0.566	0.606	0.647	0.687	0.728	0.768	0.809	0.849
60	0.052	0.092	0.132	0.172	0.212	0.252	0.291	0.331	0.371	0.411	0.451	0.491	0.531	0.570	0.610	0.650	0.690	0.730	0.770	0.810	0.849
65	0.069	0.108	0.147	0.186	0.225	0.264	0.303	0.342	0.381	0.420	0.459	0.498	0.537	0.576	0.645	0.654	0.693	0.732	0.771	0.810	0.849
70	0.092	0.130	0.167	0.205	0.243	0.281	0.319	0.357	0.395	0.433	0.471	0.508	0.546	0.584	0.622	0.660	0.698	0.736	0.774	0.812	0.849
75	0.121	0.158	0.194	0.230	0.267	0.303	0.340	0.376	0.412	0.449	0.485	0.522	0.558	0.595	0.631	0.667	0.704	0.740	0.777	0.813	0.849
80	0.162	0.196	0.230	0.265	0.299	0.334	0.368	0.402	0.437	0.471	0.506	0.540	0.574	0.609	0.643	0.678	0.712	0.746	0.781	0.815	0.849
85	0.220	0.252	0.283	0.315	0.346	0.378	0.409	0.441	0.472	0.503	0.535	0.566	0.598	0.629	0.661	0.692	0.724	0.755	0.787	0.818	0.849
90	0.312	0.339	0.366	0.393	0.419	0.446	0.473	0.500	0.527	0.554	0.581	0.608	0.634	0.661	0.688	0.715	0.742	0.769	0.796	0.823	0.849
95	0.478	0.496	0.515	0.533	0.552	0.571	0.589	0.608	0.626	0.645	0.664	0.682	0.701	0.719	0.738	0.757	0.775	0.794	0.812	0.831	0.849
98	0.656	0.666	0.676	0.685	0.695	0.705	0.714	0.724	0.734	0.743	0.753	0.763	0.772	0.782	0.792	0.801	0.811	0.821	0.830	0.840	0.849

Agriculture land use (pasture) No DCIA, CN for D soils = 90SF residential land use $\frac{1}{4}$ acre lots - DCIA = 40%, CN for lawns, D soils = 90 C = .527

C = .312

Reducing Parking Lot Imperviousness And DCIA

Disconnecting Directly Connected Impervious Areas (DCIA)

RECESSED ROAD MEDIANS AS BMPs

Source Control BMPs

- SC1 Retain depression storage
- SC2 Selective clearing/grading
- **SC3 Minimize compaction**
- SC4 Build with slope
- SC5 Cluster development
- SC6 Florida-friendly landscape

- SC7 Rainfall interception trees
- SC8 Install efficient irrigation
- SC9 Harvest and use stormwater

Source Controls For Pollution Prevention

- Minimize clearing, removal of trees, vegetation
- Include urban reforestation
- Minimize imperviousness, esp. DCIA
 - Minimize soil compaction
 - Narrow streets, pervious parking, recessed tree islands
 - Greenroof/cistern systems for large roofs
 - Roof runoff to cisterns, pervious areas
- Minimize pollutants
 - Florida-friendly landscaping design
 - Florida-friendly fertilizers
 - Proper use of reclaimed water
 - Pet waste pick up and disposal

LAND CLEARING, VEGETATION REMOVAL AND SOIL COMPACTION

80% compaction on first pass of equipment

Soil Compaction And Infiltration Rates

SOIL TYPE		「ION RATE /hr)
	Pitt et. al.	Gregory
Sandy soils	13.0	14.8 – 25
Compacted sandy soils	1.4	0.3 - 6.9
Clay soils	9.8	NA
Compacted or wet clay soils	0.2	NA

Source: Pitt, Chen, and Clark, 2001; Gregory, 2006

A Guide to Florida-Friendly Landscaping

Florida Yards & Neighborhoods Handbook

Florida-friendly Landscaping Principles

- 1. Right plant, right place
- 2. Water efficiently, use stormwater
- 3. Fertilize properly
- 4. Mulch
- 5. Attract wildlife
- 6. Manage yard pests properly
- 7. Recycle clippings and leaves
- 8. Reduce runoff
- 9. Protect the waterfront

http://www.floridayards.org

GUARANTEED ANALYSIS

- IRON (Fe) Total.....0.96 % 0.19% Water Soluble Iron (Fe)
- MANGANESE (Mn) Total......0.48 % 0.1% Water Soluble Manganese (Mn)
- DERIVED FROM: Polymer Coated Sulfur Coated Urea, Sulfate of Potash, Iron Oxide, Manganese Oxide.
- CHLORINE (CI) Max2.00%
- *7.00% Slowly Available Urea Nitrogen from Polymer Coated Sulfur Coated Urea.

Use Florida-friendly Fertilizers 15 - 0 - 15

(N) Total (P₂O₅) Nitrogen Phosphorus

(K₂O) Potassium

- **DACS Urban Turf Fertilizer Label Rule**
 - Effective July 1, 2009

- Only specified fertilizers on turf
 - No or low phosphorus (< 0.5%)
 - Partial slow release nitrogen
- Maximum application rates
 - 0.25 lbs P/1000 sf per apply
 - 0.50 lbs P/1000 sf per year
 - 0.7 lbs available N/1000 sf

PET WASTE: A Major Source Of Nutrients And Bacteria Pollutants

- Pets deposit up to 0.5 lbs/day of pet waste
- Contributes to bacterial and nutrient pollution

	Animal	Average fecal coliform per gram of feces	Fecal coliform load per day
Contraction of the second	Human	13,000,000	1,921,920,000
a) and a	Dog	23,000,000	7,728,000,000
	Cow	230,000	5,358,080,000
	Horse	12,600	293,529,600

RAINFALL INTERCEPTOR TREES

Interceptor Tree BMP Up to 18% reduction in stormwater volume

Interim BMP Need more data!

Structural BMPs in LID Manual

Retention BMPs

- Basins
- Exfiltration trenches
- Underground storage
- Bioretention (rain garden)
- Swales
- Vegetated natural buffers
- Pervious pavements

Harvest & Reuse BMPs

- Greenroof/cistern
- Rainwater harvesting
- Stormwater harvesting

Filtration BMPs

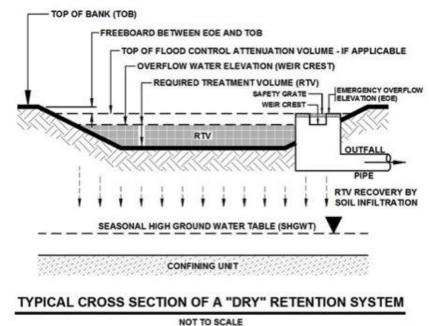
- Managed aquatic plants
- Upflow filters
- Biofiltration with BAM

LID BMPs And Getting An Environmental Resource Permit

LID BMP	NWFWMD ACCEPTABILITY
Rain garden (bioretention)	Retention BMP
Swales	Retention BMP
Vegetated Natural Buffers	AH Section 11.0
Pervious pavements	Retention BMP
Green roof with cistern	Retention and reuse BMP
Rainwater harvesting	Retention BMP, not rain barrel
Stormwater harvesting	AH Section 8.6
Biofiltration with BAM	Approvable

5.3 Retention (Infiltration) Practices

DESCRIPTION: Family of practices where the stormwater is infiltrated or evaporated rather than discharged.


PURPOSE:

- Reduce total volume
- Reduce pollutants

POLLUTANT REMOVAL:

- Percolation, evaporation
- Filtering and adsorption

Retention BMP Generally Applicable Design Criteria

- 1. Treatment Volume varies with performance standard Use Tables A1-1 and A2-1
- 2. HSG A or B soils, less than 30% clay
- 3. 72 hour recovery time (24 36 hr if grassed)
- 4. Good percolation test data
- 5. Geological data if in Karst area
- 6. More than 2 feet to seasonal high ground water or bedrock, do a mounding analysis
- 7. Do not use for erosion/sediment control
- 8. Proper construction is essential avoid soil compaction and sedimentation
- 9. Ensure hazardous materials can't enter BMP
- 10. Set back at least 50' from potable wells

Retention BMP Treatment Volume and Load Reduction Effectiveness

NWFWMD – off-line - 0.5" runoff -- on-line – runoff from 1" rain -- OFW - 50% more volume

Mean Annual Mass Removal Efficiencies for 0.50-inches of Retention for Zone 1

NDCIA										Percer	t DCIA	8								
CN	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90	95	100
30	91.8	91.5	88.3	84.0	79.5	75.0	70.7	66.6	62.9	59.6	56.5	53.6	51.1	48.7	46.6	44.6	42.8	41.1	39.6	38.1
35	88.2	89.1	86.6	82.8	78.6	74.3	70.1	66.2	62.6	59.3	56.3	53.5	51.0	48.7	46.5	44.6	42.8	41.1	39.6	38.1
40	84.0	86.3	84.4	81.2	77.4	73.4	69.4	65.7	62.2	59.0	56.0	53.3	50.8	48.5	46.4	44.5	42.7	41.1	39.6	38.1
45	79.6	82.9	81.9	79.3	75.9	72.2	68.5	65.0	61.7	58.6	55.7	53.0	50.6	48.4	46.3	44.4	42.7	41.0	39.5	38.1
50	74.8	79.1	79.0	77.0	74.1	70.8	67.4	64.1	61.0	58.0	55.3	52.7	50.4	48.2	46.2	44.3	42.6	41.0	39.5	38.1
55	70.1	74.9	75.6	74.2	71.9	69.1	66.1	63.0	60.1	57.3	54.7	52.3	50.0	47.9	46.0	44.2	42.5	40.9	39.5	38.1
60	65.5	70.4	71.7	71.1	69.4	67.0	64.4	61.7	59.1	56.5	54.1	51.8	49.6	47.6	45.8	44.0	42.4	40.9	39.5	38.1
65	61.0	65.8	67.5	67.6	66.4	64.7	62.5	60.2	57.8	55.5	53.3	51.1	49.1	47.2	45.5	43.8	42.3	40.8	39.4	38.1
70	56.7	61.1	63.1	63.6	63.1	61.9	60.2	58.3	56.3	54.3	52.3	50.3	48.5	46.8	45.1	43.5	42.1	40.7	39.4	38.1
75	52.7	56.6	58.6	59.3	59.3	58.6	57.5	56.0	54.4	52.7	51.0	49.3	47.7	46.1	44.6	43.2	41.8	40.5	39.3	38.1
80	49.1	52.2	54.1	55.0	55.2	54.9	54.2	53.2	52.1	50.8	49.4	48.0	46.6	45.3	44.0	42.7	41.5	40.3	39.2	38.1
85	46.1	48.3	49.7	50.5	50.8	50.8	50.5	49.9	49.2	48.3	47.3	46.3	45.2	44.2	43.1	42.1	41.0	40.0	39.1	38.1
90	43.5	44.8	45.6	46.1	46.4	46.5	46.4	46.1	45.7	45.2	44.6	44.0	43.3	42.6	41.9	41.1	40.4	39.6	38.9	38.1
95	41.1	41.5	41.8	41.9	42.0	42.1	42.0	41.9	41.8	41.6	41.3	41.1	40.8	40.4	40.1	39.7	39.3	38.9	38.5	38.1
98	39.8	39.8	39.8	39.8	39.8	39.7	39.7	39.6	39.5	39.4	39.3	39.2	39.1	39.0	38.9	38.7	38.6	38.4	38.3	38.1

Treatment effectiveness varies from 38% to 92%

Retention BMP Treatment Volume and Load Reduction Effectiveness

NDCIA	5									Percer	t DCIA	6								
CN	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90	95	100
30	94.0	94.9	93.4	91.0	88.1	85.0	81.8	78.7	75.5	72.6	69.7	67.0	64.5	62.1	59.8	57.7	55.7	53.8	52.1	50.5
35	91.2	93.0	91.9	89.8	87.2	84.2	81.2	78.2	75.2	72.3	69.5	66.8	64.3	62.0	59.7	57.6	55.7	53.8	52.1	50.5
40	88.1	90.5	90.1	88.3	86.0	83.3	80.5	77.6	74.7	71.9	69.2	66.6	64.1	61.8	59.6	57.6	55.6	53.8	52.1	50.5
45	84.5	87.7	87.9	86.5	84.5	82.1	79.5	76.8	74.0	71.4	68.8	66.3	63.9	61.6	59.5	57.5	55.5	53.7	52.0	50.5
50	80.8	84.6	85.2	84.4	82.8	80.7	78.3	75.8	73.3	70.7	68.3	65.9	63.6	61.4	59.3	57.3	55.5	53.7	52.0	50.5
55	77.1	81.1	82.2	81.9	80.7	79.0	76.9	74.6	72.3	70.0	67.6	65.4	63.2	61.1	59.1	57.2	55.3	53.6	52.0	50.5
60	73.2	77.5	79.0	79.1	78.3	76.9	75.2	73.2	71.1	69.0	66.9	64.7	62.7	60.7	58.8	56.9	55.2	53.5	51.9	50.5
65	69.6	73.8	75.4	75.8	75.5	74.5	73.2	71.5	69.7	67.8	65.9	63.9	62.0	60.2	58.4	56.7	55.0	53.4	51.9	50.5
70	66.1	69.9	71.7	72.3	72.3	71.7	70.8	69.5	68.0	66.4	64.7	63.0	61.3	59.6	57.9	56.3	54.8	53.3	51.8	50.5
75	62.7	66.0	67.8	68.6	68.8	68.5	67.9	67.1	65.9	64.7	63.3	61.8	60.3	58.8	57.3	55.9	54.5	53.1	51.7	50.5
80	59.6	62.2	63.8	64.7	65.1	65.1	64.8	64.2	63.4	62.5	61.4	60.3	59.1	57.8	56.6	55.3	54.0	52.8	51.6	50.5
85	56.8	58.7	60.0	60.8	61.2	61.4	61.3	61.0	60.5	59.9	59.1	58.3	57.4	56.5	55.5	54.5	53.5	52.5	51.4	50.5
90	54.5	55.6	56.4	57.0	57.3	57.5	57.5	57.4	57.2	56.8	56.4	55.9	55.4	54.7	54.1	53.4	52.7	51.9	51.2	50.5
95	52.5	52.9	53.2	53.3	53.5	53.6	53.6	53.6	53.5	53.4	53.2	53.0	52.8	52.5	52.2	51.9	51.6	51.2	50.8	50.5
98	51.7	51.7	51.7	51.7	51.7	51.7	51.7	51.6	51.6	51.5	51.4	51.3	51.3	51.2	51.1	51.0	50.8	50.7	50.6	50.5

Mean Annual Mass Removal Efficiencies for 0.75-inches of Retention for Zone 1

Mean Annual Mass Removal Efficiencies for 1.00-inches of Retention for Zone 1

NDCIA							www.			Percen	t DCIA						x + 100 3			
CN	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90	95	100
30	95.3	96.5	95.9	94.4	92.5	90.3	87.9	85.5	83.1	80.6	78.2	75.8	73.6	71.4	69.2	67.2	65.3	63.4	61.6	60.0
35	93.1	94.9	94.6	93.3	91.6	89.5	87.3	85.0	82.7	80.3	77.9	75.6	73.4	71.2	69.1	67.1	65.2	63.4	61.6	60.0
40	90.7	93.0	93.0	92.0	90.5	88.6	86.6	84.4	82.1	79.9	77.6	75.4	73.2	71.1	69.0	67.0	65.2	63.3	61.6	60.0
45	88.0	90.7	91.0	90.5	89.2	87.5	85.6	83.6	81.5	79.3	77.2	75.0	72.9	70.9	68.8	66.9	65.1	63.3	61.6	60.0
50	85.0	88.0	88.8	88.6	87.6	86.2	84.5	82.7	80.7	78.7	76.6	74.6	72.6	70.6	68.6	66.8	65.0	63.2	61.6	60.0
55	81.8	85.3	86.4	86.3	85.7	84.6	83.2	81.5	79.8	77.9	75.9	74.0	72.1	70.2	68.4	66.6	64.8	63.1	61.5	60.0
60	78.7	82.3	83.6	83.9	83.5	82.7	81.5	80.1	78.6	76.9	75.1	73.4	71.6	69.8	68.0	66.3	64.7	63.0	61.5	60.0
65	75.6	79.1	80.6	81.2	81.0	80.5	79.6	78.5	77.2	75.7	74.1	72.5	70.9	69.3	67.6	66.0	64.4	62.9	61.4	60.0
70	72.7	75.9	77.5	78.2	78.3	78.0	77.4	76.5	75.5	74.2	72.9	71.5	70.1	68.6	67.1	65.6	64.2	62.7	61.3	60.0
75	69.9	72.7	74.2	75.0	75.3	75.2	74.8	74.2	73.4	72.5	71.4	70.3	69.1	67.8	66.5	65.1	63.8	62.5	61.2	60.0
80	67.2	69.5	70.8	71.7	72.1	72.1	72.0	71.6	71.1	70.4	69.6	68.7	67.8	66.7	65.6	64.5	63.4	62.2	61.1	60.0
85	64.8	66.5	67.6	68.3	68.7	68.9	68.9	68.7	68.4	68.0	67.5	66.8	66.1	65.4	64.5	63.7	62.8	61.8	60.9	60.0
90	62.7	63.7	64.4	65.0	65.3	65.5	65.6	65.6	65.5	65.2	65.0	64.6	64.2	63.7	63.1	62.6	61.9	61.3	60.6	60.0
95	61.1	61.5	61.8	62.0	62.1	62.2	62.3	62.3	62.3	62.2	62.1	62.0	61.8	61.6	61.4	61.2	60.9	60.6	60.3	60.0
98	60.7	60.7	60.7	60.8	60.8	60.8	60.8	60.8	60.7	60.7	60.7	60.6	60.6	60.5	60.4	60.3	60.3	60.2	60.1	60.0

Retention BMP Treatment Volume to get 80% Load Reduction Effectiveness

NDCIA	-								Per	rcent DC	IA								
CN	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90	95	100
30	0.25	0.36	0.45	0.52	0.63	0.71	0.80	0.90	0.99	1.08	1.17	1.27	1.36	1.45	1.55	1.64	1.73	1.83	1.92
35	0.29	0.39	0.46	0.54	0.64	0.72	0.82	0.91	1.00	1.09	1.18	1.27	1.37	1.46	1.55	1.64	1.74	1.83	1.92
40	0.35	0.43	0.49	0.58	0.67	0.75	0.84	0.93	1.02	1.11	1.20	1.29	1.38	1.47	1.56	1.65	1.74	1.83	1.92
45	0.44	0.47	0.54	0.62	0.70	0.78	0.87	0.95	1.04	1.13	1.21	1.30	1.39	1.48	1.57	1.66	1.74	1.83	1.92
50	0.56	0.55	0.60	0.67	0.74	0.82	0.90	0.98	1.06	1.15	1.23	1.32	1.41	1.49	1.58	1.66	1.75	1.83	1.92
55	0.71	0.67	0.69	0.74	0.80	0.87	0.95	1.02	1.10	1.18	1.26	1.34	1.43	1.51	1.59	1.67	1.75	1.84	1.92
60	0.89	0.81	0.81	0.83	0.88	0.94	1.01	1.07	1.15	1.22	1.30	1.37	1.45	1.53	1.60	1.68	1.76	1.84	1.92
65	1.07	0.98	0.95	0.96	0.99	1.03	1.08	1.14	1.21	1.27	1.34	1.41	1.48	1.55	1.62	1.70	1.77	1.85	1.92
70	1.24	1.15	1.11	1.10	1.11	1.14	1.18	1.23	1.28	1.34	1.40	1.46	1.52	1.58	1.65	1.72	1.78	1.85	1.92
75	1.42	1.33	1.29	1.27	1.27	1.28	1.30	1.33	1.37	1.42	1.47	1.52	1.57	1.62	1.68	1.74	1.80	1.86	1.92
80	1.58	1.50	1.46	1.43	1.42	1.43	1.44	1.46	1.49	1.52	1.55	1.59	1.63	1.68	1.72	1.77	1.82	1.87	1.92
85	1.73	1.67	1.63	1.60	1.59	1.58	1.59	1.59	1.61	1.63	1.65	1.68	1.71	1.74	1.77	1.80	1.84	1.88	1.92
90	1.85	1.82	1.79	1.77	1.75	1.74	1.74	1.74	1.74	1.75	1.76	1.77	1.79	1.81	1.83	1.85	1.87	1.90	1.92
95	1.94	1.92	1.91	1.90	1.89	1.88	1.88	1.87	1.87	1.87	1.87	1.88	1.88	1.88	1.89	1.90	1.90	1.91	1.92
98	1.94	1.93	1.93	1.93	1.92	1.92	1.92	1.92	1.92	1.92	1.92	1.91	1.92	1.92	1.92	1.92	1.92	1.92	1.92

Panhandle (Zone 1)

Treatment volume varies from 0.25" to 1.92"

Getting Good Infiltration Data for Retention BMP Design

- See Appendix B of Manual
- Measure at proposed bottom elevation
- Allowable data
 - Mass balance field data
 - Double ring infiltrometer *
 - Lab permeability tests *
 - NRCS soil survey planning only
 - * Use half of the value

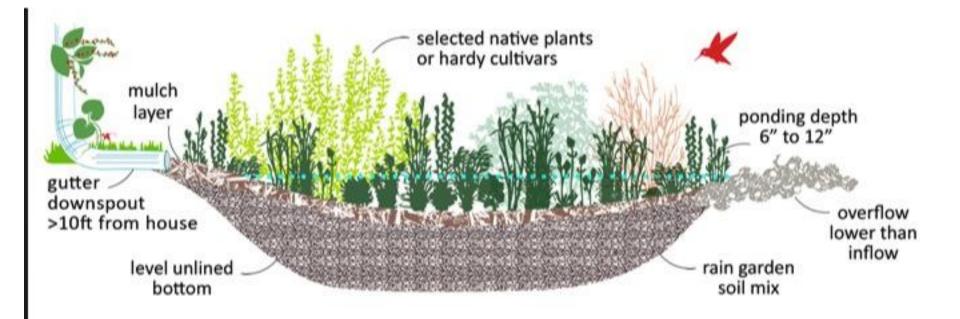
Retention BMP Construction Recommendations

- Schedule construction in dry season
- Knowledgeable construction supervisor
- Verify soil conditions, water table, rock
- Mark infiltration areas to keep equipment out
- Excavate with light, wide track equipment
- Place excavated material away, downslope
- During site construction, divert sediment runoff; don't excavate to final grade
- Final grade excavation after site is stabilized
- Deeply till after final grade established
- Establish vegetation quickly
- Final inspection, "As-Builts" measure final infiltration rate

Retention BMP Maintenance Inspection

- Standing water or soggy soils, cattails
- Erosion and sedimentation
- Vegetation coverage, growth, type
- Soil compaction or smearing
- Pretreatment BMPs
- Contributing area stabilization
- Inlets, discharge sediment, litter, debris, vegetation

Retention BMP Maintenance Activities


Objective – maintain or restore percolation rate

- Remove accumulated solids
- Mowing and removal of vegetation
- Repair erosion, vegetative stabilization
- Tilling, disking, aerating the bottom
- Check structures
- Clear debris from structures
- Clean pretreatment BMPs

5.6 LID BMP – Bioretention Area or Rain Garden

- Small retention depressions integrated into the landscaping with deep rooted Florida-friendly vegetation.
- http://lowimpactdevelopment.org/raingard en_design/whatisaraingarden.htm

Rain Garden Design Criteria

- Contributing DA <3 acres
- Ponding depth 4 to 10 inches
- Location sunny, on slopes <10%, at least 10' from buildings
- Vegetation depends on planting zones, dry to wet zones, need a good plan
- Mulch use materials that won't float

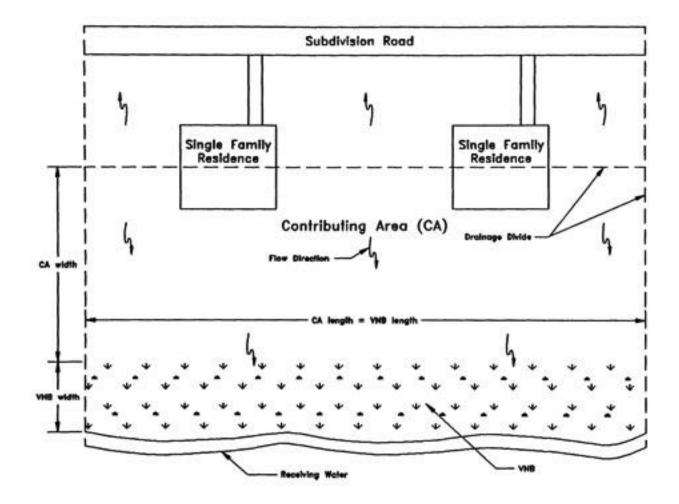
Rain Garden Construction

- Determine final shape and location after locating utilities, mark on ground
- Excavate the garden, use soil for berm
- Prepare and add soil/media mixture (BAM)
- Install plants per the design, 1' On Center
- Apply mulch (if used)
- Water plants regularly
- Check conveyance inflow, water storage, and infiltration rate

Rain Garden Maintenance

- In first year, water and weed regularly
- Inspect at start and end of rainy season
- Check infiltration rate after rainy season
- Each spring, remove dead vegetation and replenish mulch
- Weed and maintain plants as needed
- Remove sediment, trash, debris
- Repair erosion, as needed

Inlet with basin full of sediment



5.8 LID BMP – Vegetated Natural Buffers

- A vegetated area with soil and water table conditions that allow filtering and infiltration of overland flows.
- Used to treat rear roof and yard runoff when impractical to route to main stormwater system.
- Treatment based on retention volume that is infiltrated

5.8 LID BMP – Vegetated Natural Buffers

Vegetated Natural Buffers Design Criteria

- Infiltrate required treatment volume
- SHGWT > two feet below bottom
- 1" minimum infiltration rate
- Contributing area less than 300' (flow length)
- Buffer length equal to the length of CA
- Buffer width (flow length) from 25' to 100'
- 6:1 maximum slope
- Legal easement for VNB

Vegetated Natural Buffers Construction

- Verify location and dimensions of VNB
- Install erosion and sediment controls and divert flows until contributing area construction is complete/stabilized
- Mark VNB boundaries to prevent compaction from equipment
- Install upstream level spreader
- Ensure vegetation is healthy, add Florida-friendly plants as needed

Vegetated Natural Buffers Inspection and Maintenance

- Inspect during or soon after a storm to visually check sheet flow and flow paths
- Eliminate channelized flow areas and restore vegetation, if needed
- Eliminate erosion, remove sediment, restore vegetation, as needed
- Identify damage from vehicles, foot traffic, or encroachment
- Ensure infiltration within 24 36 hrs